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Recently, perfectly matched layer (PML) as an absorbing boundary condition
has found widespread applications. The idea was first introduced by Berenger for
electromagnetic waves computations. In this paper, it is shown that the PML equations
for the linearized Euler equations support unstable solutions when the mean flow has a
component normal to the layer. To suppress such unstable solutions so as to render the
PML concept useful for this class of problems, it is proposed that artificial selective
damping terms be added to the discretized PML equations. It is demonstrated that
with a proper choice of artificial mesh Reynolds number, the PML equations can
be made stable. Numerical examples are provided to illustrate that the stabilized
PML performs well as an absorbing boundary condition. In a ducted environment,
the wave modes are dispersive. It will be shown that in the presence of a mean
flow the group velocity and phase velocity of these modes can have opposite signs.
This results in a band of transmitted waves in the PML to be spatially amplifying
instead of evanescent. Thus in a confined environment, PML may not be suitable as
an absorbing boundary condition unless there is no mean flow.c© 1998 Academic Press

1. INTRODUCTION

Recently, Berenger [1, 2] succeeded in formulating an absorbing boundary condition for
computational electromagnetics that has the unusual characteristic that when an outgoing
disturbance impinges on the interface between the computation domain and the absorbing
layer surrounding it, no wave is reflected back into the computation domain. In other words,
all the outgoing disturbances are transmitted into the absorbing layer where they are damped
out. Such a layer has come to be known as a perfectly matched layer (PML).

Since its initial development, PML has found widespread applications in elastic wave
propagation [3], computational aeroacoustics, and many other areas. Hu [4] was the first to
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apply PML to aeroacoustics problems governed by the linearized Euler equations, linearized
over a uniform mean flow. He has since extended his work to nonuniform mean flow
and for the fully nonlinear Euler equations [5]. Further applications of PML to acoustics
problems including wavemodes in ducts can be found in the most recent works of Hu
and co-workers [6, 7]. In these references, examples are provided that indicate that high
quality numerical solutions could be found with PML used as radiation or outflow boundary
conditions.

In open unbounded domains, acoustic waves are nondispersive and propagate with the
speed of sound relative to the local mean flow. Inside a duct, the situation is completely
different. Acoustic waves are repeatedly reflected back by the confining walls. For ducts
with parallel walls, the continuous reflection of the acoustic waves by the wall leads to the
formation of coherent wave patterns called duct modes [8, 9]. Unlike the open domain,
duct modes are dispersive with phase and group velocities vary with axial wavenumber.
Because of the dispersive nature of the duct modes many radiation boundary conditions that
work well in open domains are known to be inappropriate for ducted environments. For this
reason, Tam [10] in a recent review on numerical boundary conditions for computational
aeroacoustics suggested that the boundary condition for a ducted environment be regarded
as a category of its own.

There are three primary objectives in this work. First, we intend to show that in the
presence of a mean flow normal to a PML, the standard PML equations of the linearized
Euler equations support unstable solutions. Earlier Tam [10] pointed out that the PML
equations with mean flow have unstable solutions. However, he did not show that the
existence of instabilities is due to the mean flow component normal to the layer. The origin
and characteristics of these instabilities are investigated and analyzed. It is interesting to
mention that in his earliest work, Hu [4] reported that his computation encountered numerical
instability. But by applying numerical filtering, he was able to obtain stable solutions. In
light of our finding, we believe that what Hu encountered was not instability of his numerical
scheme but that his numerical solution inadvertently excited the intrinsic unstable solution
of the PML equations. Not directly related to the instability of the PML equations, Abarbanel
and Gottlieb [11] recently analyzed the electromagnetic PML equations. They concluded
that the equations are only weakly well-posed.

Second, we will show that the instability is not very strong, namely, the growth rates are
small. Also the instabilities are confined primarily to short waves. It is, therefore, possible
to suppress the instabilities by the addition of artificial selective damping terms [12] to
the discretized PML equations. It is important to point out that artificial selective damping
eliminates mainly the short waves and has negligible effect on the long or the physical
waves. Thus the addition of these damping terms does not effect the perfectly matched
conditions of the PML.

Third, we will show that a perfectly matched layer may not be suitable as an absorbing
boundary condition for waves in a ducted flow environment. The major difference between
acoustic waves in an open domain and acoustic waves inside a duct is that in an unbounded
region acoustic waves are nondispersive whereas duct modes are dispersive. It will be shown
that in the presence of a mean flow the group and phase velocity of the duct modes can have
opposite signs. Because of this, a band of transmitted waves will actually grow spatially
instead of being damped in the PML. In other words, the PML equations do not damp these
wave modes as absorbing boundary condition ought to do. The exception is when there is no
mean flow in the duct. In this special case, all the transmitted waves are spatially damped.
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In Section 2, the use of PML for open domain problems is discussed. The stability of
the PML governing equations is investigated. It will be shown that the addition of damp-
ing terms to form the PML equations can actually cause the vorticity and acoustic wave
modes to become unstable. The splitting of the variables in formulating the PML equations
leads to a higher order system of equations. This higher system supports extra solutions.
These extra or spurious solutions are found to become unstable when the damping coefficient
is large. Numerical examples are provided to illustrate the spread of the unstable solution
from the PML back into the interior of the computation domain.

In Section 3, the effect of the addition of artificial selective damping terms to the dis-
cretized PML equations is investigated. It is shown that with an appropriate choice of
mesh Reynolds number, the unstable solutions of the PML equations can be suppressed.
Numerical examples are given to demonstrate the effectiveness of the modified PML as a
radiation/outflow boundary condition.

Section 4 deals with the theory and application of PML to ducted internal flow problems.
An eigenvalue analysis is carried out to show the existence of a band of frequency for which
the PML exerts no damping on the acoustic duct modes. These wave modes actually would
grow in amplitude as they propagate through the PML. Numerical results are provided to
illustrate the existence of this kind of amplifying ducted acoustic modes.

2. OPEN DOMAIN PROBLEMS

Let us consider the use of PML as absorbing boundary condition for the solution of the
linearized Euler equations (linearized over a uniform mean flow) in a two-dimensional open
domain as shown in Fig. 1. We will use1x=1y (the mesh size) as the length scale,a0

(the sound speed) as the velocity scale,1x
a0

as the time scale, andρ0a2
0 (whereρ0 is the

FIG. 1. Two dimensional computation domain with Perfectly Matched Layers as boundaries.
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mean density) as the pressure scale. The dimensionless governing equations in the PML
are formed by splitting the linearized Euler equations according to the spatial derivatives.
An absorption term is added to each of the equations with spatial derivative in the direction
normal to the layer. For example, for the PML on the right boundary of Fig. 1 (not at the
corners) the governing equations are [4]

∂u1

∂t
+ σu1+ Mx

∂

∂x
(u1+ u2)+ ∂

∂x
(p1+ p2) = 0

∂u2

∂t
+ My

∂

∂y
(u1+ u2) = 0

∂v1

∂t
+ σv1+ Mx

∂

∂x
(v1+ v2) = 0

∂v2

∂t
+ My

∂

∂y
(v1+ v2)+ ∂

∂y
(p1+ p2) = 0

∂p1

∂t
+ σp1+ Mx

∂

∂x
(p1+ p2)+ ∂

∂x
(u1+ u2) = 0

∂p2

∂t
+ My

∂

∂y
(p1+ p2)+ ∂

∂y
(v1+ v2) = 0,

(1)

whereMx and My are the mean flow Mach numbers in thex and y directions.σ is the
absorption coefficient.

Suppose we look for solutions with(x, y, t)dependence in the form exp[i (αx+βy−ωt)].
It is easy to find from (1) that the dispersion relations of the PML equations are(

1− αMx

ω + iσ
− βMy

ω

)2

− α2

(ω + iσ)2
− β

2

ω2
= 0 (2)

1− αMx

ω + iσ
− βMy

ω
= 0. (3)

In the limit σ→ 0, (2) and (3) become the well-known dispersion relations of the acoustic
and the vorticity waves of the linearized Euler equations.

2.1. Mean Flow Parallel to PML

Dispersion relations (2) and (3) behave very differently depending on whether there is
any mean flow normal to the PML. When the mean flow is parallel to the layer, i.e.,Mx = 0,
the solutions are stable. This is easy to see from (3) for the vorticity wave. Physically, if
the mean flow is parallel to the PML, the vorticity waves in the computation domain, being
convected by the mean flow, cannot enter the layer and hence would not lead to unstable
solution.

To show that forMx = 0 all the solutions of (2) are stable, a simple mapping will suffice.
Rewrite (2) in the form

F ≡ (ω − βMy)
2− α2ω2

(ω + iσ)2
= β2. (4)

Figure 2 shows the image of the upper-halfω-plane in theF plane. The upper-halfω-plane
is mapped into the entireF plane except for the slitADC. But sinceβ2 is real and positive,
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FIG. 2. The image of the upper halfω-plane in theF-plane.

for subsonic mean flow the pointβ2 lies outside the image. Thus no value ofω in the
upper-halfω-plane would satisfy Eq. (2) indicating that there is no unstable solution.

2.2. Unstable Solutions of the PML Equations

For Mx 6= 0, the PML equations support unstable solutions. It is to be noted that, unlike
the original dispersion relation of the acoustic waves, Eq. (2) is a quadric equation inω. It
has two extra roots in addition to the two modified acoustic modes. For smallσ , the two
spurious roots are damped but one of the modified acoustic roots is unstable. For largerσ ,
numerical solutions indicate that one of the spurious roots becomes unstable. In any case,
the equation splitting procedure and the addition of an absorption term, both are vital to the
suppression of reflections at the interface between the computation domain and the PML,
inadvertently, lead to instabilities.

For smallσ , the roots of (2) and (3) can be found by perturbation. Let

ω(a) = ω(a)0 + σω(a)1 + σ 2ω
(a)
2 + · · · (5)

ω(v) = ω(v)0 + σω(v)1 + σ 2ω
(v)
2 + · · · , (6)

where the roots of (2) and (3) are designated by a superscripta (for acoustic waves) andv
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(for vorticity waves). Substituting (5) and (6) into (2) and (3), it is straightforward to find

ω
(a)
0 = ω+, ω−, 0, 0 (7)

where

ω± = (αMx + βMy)± (α2+ β2)
1
2 (8)

ω
(a)
1 = i

[ −α2∓ αMx(α
2+ β2)

1
2

α2+ β2± (αMx + βMy)(α2+ β2)
1
2

]
(9)

ω
(v)
0 = αMx + βMy, 0 (9a)

ω
(v)
1 =

−i

1+ (My/Mx)(β/α)
. (9b)

Clearly ifω(a)1 orω(v)1 has a positive imaginary part, the mode is unstable. It is easy to show,
especially in the caseMy= 0, that there are always values ofα andβ such thatω(a)1 of (9)
is purely imaginary and positive. Similarly, from (9b) forβ

α
< 0 and| β

α
|> Mx

My
, ω

(v)
1 is also

purely positive imaginary. Thus the PML equations in the presence of a uniform flow with
Mx 6= 0 support unstable solutions.

The unstable solutions of dispersion relations (2) and (3) can also be found numerically.
For a given(α, β) the growth rates,ωi , of the unstable solutions can be calculated in a
straightforward manner. Figure 3 shows theωi contours of the most unstable solution of
Eq. (2), the acoustic mode, in theα−β-plane for the caseMx = 0.3,My= 0.0, andσ = 1.5.
Figure 4 shows a similar plot for the vorticity wave mode (Eq. (3)). In these figures only
the unstable regions are shown. It is clear that there are instability waves over a wide range
of wavenumbers. Numerical results indicate that, in general, the unstable regions expand
as the flow Mach number or the damping coefficientσ increases.

FIG. 3. Contours of the growth rate of the most unstable wave (acoustic mode) in theα−β plane.
Mx = 0.3,My= 0.0, σ = 1.5.
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FIG. 4. Contours of the growth rate of the most unstable vorticity wave in theα−β plane. Mx = 0.3,
My= 0.2, σ = 1.0.

2.3. Numerical Examples

The nature and characteristics of the unstable waves associated with the acoustic mode and
the vorticity mode are quite different. To illustrate the excitation of these unstable solutions in
the PML by disturbances propagating or convecting from the interior computation domain, a
series of numerical experiments has been carried out. Figure 5 shows the results of the case of
a vorticity pulse convected into the PML whenMx = 0.3,My= 0.2, andσ = 1.0. The initial
conditions for the pulse are (same as the initial conditions used by Tam and Webb [13])

p = ρ = 0

u = 0.04y exp

[
−(ln 2)

(
x2+ y2

25

)]
v = −0.04x exp

[
−(ln 2)

(
x2+ y2

25

)]
.

(10)

The DRP time marching scheme [13] is used in the simulation. The PML region extends
from x= 20 to the right boundary of the computation domain. At the outermost boundary,
the boundary conditionp1= p2= ρ1= ρ2= u1= u2= v1= v2= 0 is imposed. Plotted in
Fig. 5 are contours of theu velocity component. Figure 5a shows the initial profile of the
contours att = 0. Figure 5b, att = 50, reveals that there is damping of the vorticity pulse
as it begins to enter the PML. This damping is the result of the built-in damping,σ , of the
PML. Figure 5c, at a later timet = 90, shows the growth of the excited unstable solution
in the PML. Finally, Fig. 5d (att = 130) shows the spread of the unstable solution back
into the interior computation domain. Figure 6 gives the corresponding waveform of the
vorticity wave pulse. Figure 6d clearly indicates that the spread of the unstable vorticity
waves in the PML can quickly contaminate the entire computation domain.
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FIG. 5. Numerical simulation showing the generation and propagation of unstable vorticity-mode waves in
the PML. Mx = 0.3,My= 0.2, σm= 1.0. (a) t = 0, (b) t = 50, (c)t = 90, (d) t = 130. Contours of theu velocity
component. —, 0.1; - -, 0.05; —·—, 0.01; — - —,−0.01; - - —,−0.05; · · · ,−0.1.

Figures 7 and 8 are similar plots illustrating the excitation of the acoustic mode unstable
solution in the PML. The Mach number and damping coefficient areMx = 0.5,My= 0.0,
andσ = 1.5. The initial disturbance consists of a pressure pulse given by

p = ρ = exp

[
−(ln 2)

(
x2+ y2

9

)]
u = v = 0.

(11)

The acoustic pulse generated by the initial disturbance propagates at a speed equal to the
sound speed plus the flow velocity. Thus, the pulse leaves the small interior computation
domain(50× 50) very quickly. Figure 7a shows the pressure contours att = 140. At this
time, the acoustic pulse is gone. The contours are associated with the excited unstable waves
of the acoustic mode. These unstable waves move at a slow speed. Figure 7b is att = 200.
On comparing Figs. 7a and 7b, it is evident that there is significant growth of the unstable
waves. Upon reaching the outermost boundary of the computation domain the unstable wa-
ves are reflected back as short waves. This is illustrated in Fig. 7c. The reflected short waves
propagate at ultrafast speed. They contaminate the computation domain in a short period
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FIG. 6. Waveforms ofu showing the generation of unstable vorticity-mode waves excited by vorticity waves
convected from the interior computation domain to the PML and the subsequent contamination of the interior
computation domain.Mx = 0.3,My= 0.2, σm= 1.0.

of time as shown in Fig. 7d. Figure 8 shows the growth of the pressure waveform of the
unstable acoustic mode waves in the PML before they reach the outer boundary of the
computation domain. The measured growth rate of the most unstable wave has been found
to agree with that calculated by the dispersion relation.

3. DEVELOPMENT OF A STABLE PML

3.1. Artificial Selective Damping

To ensure practicality, the thickness of a PML would normally be limited to around 15 to
20 mesh spacings. For a PML with such a thickness, it is easy to show that if the transmitted
wave from the computation domain is to be reduced by a factor of 105 in the presence
of a subsonic mean flow, the damping coefficientσ of (1) should have a value of about
1.5. By solving the dispersion relations (2) and (3) numerically, it has been found that for
σ = 1.5 the unstable wave solutions have only a modest rate of growth. Moreover, these
waves, generally, have short wavelengths. Mild instabilities of this type can be effectively
suppressed by the addition of artificial selective damping terms [12, 14] to the discretized
governing equations. The advantage of using artificial selective damping is that the damping
is confined primarily to short waves. Thus, the perfectly matched condition is not adversely
affected for the long waves (the physical waves) of the computation.
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FIG. 7. Numerical simulation showing the generation and propagation of unstable acoustic-mode waves in the
PML. Mx = 0.5,My= 0.0, σm= 1.5. Contours of pressure. (a)t = 140, —p= 10−4; (b) t = 200, —p= 5.10−3;
(c) t = 260, —p= 5.10−2; (d) t = 300, —p= 5.10−2.

Consider the first equation of (1). Let(l ,m) be the spatial indices in thex- and
y-directions. The semi-discretized form of this equation using the DRP scheme with artifi-
cial selective damping terms added to the right side is

d

dt
(u1)l ,m + σ(u1)l ,m +

3∑
j=−3

aj [Mx(u1+ u2)l+ j,m + (p1+ p2)l+ j,m]

= − 1

R1

3∑
j=−3

dj [(u1)l+ j,m + (u1)l , j+m], (12)

wheredj ’s are the artificial selective damping coefficients [14] andR1=a∞ 1x
νa

is the
artificial mesh Reynolds number. Terms similar to those on the right side of (12) are to be
added to all the other discretized equations.

For the purpose of suppressing unstable solutions in the PML, we recommend the use
of a damping curve with a slightly larger half-width then those given in Ref. [14]. In this
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FIG. 8. Waveforms of pressure alongy= 0 showing the generation of unstable acoustic-mode waves in the
PML excited by acoustic disturbances from the computation domain.Mx = 0.5,My= 0.0, σm= 1.5.

work, the following damping coefficients (half-width= 0.35π) are used:

d0 = 0.3705630354

d1 = d−1 = −0.2411788110

d2 = d−2 = 0.0647184823

d3 = d−3 = −0.0088211899.

(13)

The damping rate of the artificial selective damping terms can be found by taking the
Fourier transform of the right side of (12) (see [12]). Let (α, β) be the transform variables
in the(x, y)-plane. The rate of damping for wavenumber (α, β) is

damping rate= 1

R1
D(α, β), (14)

where

D(α, β) =
3∑

j=−3

dj (e
i j α + ei jβ). (15)

Contours of the damping functionD(α, β) in theα−β-plane are shown in Fig. 9.
To demonstrate that suppression of the unstable solutions can be achieved by adding

artificial selective damping terms to the discretized form of Eq. (1), let us consider the
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FIG. 9. Contours of constantD(α, β) in theα−β plane. Damping coefficientsdj ’s are given by (13).

unstable solution with growth rate given by Fig. 3. On combining the growth rate of Fig. 3
and the damping rate of Fig. 9 withR1= 1.421, the resulting growth contours, (Im(ω) −
D(α, β)/R1), are shown in Fig. 10. Outside the dotted lines (wavenumbers inside the
vertical dotted lines correspond to wavelengths too long to fit into a 15 mesh spacing PML)

FIG. 10. Contours of combined growth and damping rates.Mx = 0.3,My= 0.0, σ = 1.5, R1= 1.42. Damping
coefficientsdj ’s are given by (13).
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the combined effects result in damping of the waves. Thus all the instabilities of the PML
equations are effectively suppressed.

3.2. Distributions ofσ and R−1
1 in the PML

In the implementation of PML as an absorbing boundary condition, Hu [4] suggested
lettingσ vary spatially in the form

σ = σm

(
d

D

)λ
, (16)

whereD is the thickness of the PML,d is the distance from the interface with the interior
domain, andλ is a constant. With the inclusion of artificial selective damping, we have found
that the use of a well-designed smooth distribution ofσ and R−1

1 at the interface region
is important if the perfectly matched condition is to be maintained in the finite difference
form of the system of equations.

Figure 11 shows a distribution ofσ and R−1
1 we found to work well with the 7-point

stencil DRP scheme. TheR−1
1 curve is zero for the first two mesh points closest to the

interface. It attends its full value(R−1
1 )max at the 6th mesh point. A cubic spline curve is

used in the transition region. With this arrangement, the first point where artificial damping
occurs is the third point from the interface. This allows the use of the 7-point symmetric
damping stencil in the PML except the last three points at the outer boundary. For these
points, the 5-point and the 3-point stencil [14] should be used instead.

Theσ curve begins with the valueσ = 0 at the fifth mesh point from the interface. The
full valueσmax is reached at 8 mesh points further away. Again, a cubic spline curve is used
in the transition region. The choice of starting theσ curve at the fifth point is to ensure that
the R−1

1 curve has attained its full value whenσ becomes nonzero.

FIG. 11. Distributions ofσ andR−1
1 in a 20 mesh spacings PML.
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FIG. 12. Damping of a vorticity wave packet in the PML including artificial selective damping terms.
Mx = 0.3,My= 0.2, σm= 1.0, (R−1

1 )max= 1.0. (a) t = 0, (b) t = 50, (c) t = 90, (d) t = 170. Contours of theu
velocity component. —, 0.1; - -, 0.05; —·—, 0.01; — - —,−0.01; - - —,−0.05; · · · ,−0.1.

3.3. Numerical Examples

To demonstrate the effectiveness of using artificial selective damping terms to suppress
the instabilities of the PML equations, the numerical examples of Subsection 2.3 are recon-
sidered here. Artificial damping is now included in the simulations. Figure 12 shows the
u-contours of the vorticity waves(Mx = 0.3,My= 0.2, σm= 1.0, (R−1

1 )max= 1.0) as they
are convected from the interior domain to the PML. The vorticity wave packet is steadily
damped. No sign of unstable waves of the type shown in Fig. 5 is detected. Figure 13 shows
the corresponding waveform ofu at a few selected times. It is clear that the pulse is damped
continuously once it propagates into the PML. The case of the acoustic disturbance has also
been repeated with similar results. Based on these findings, it is concluded that a stable PML
can be developed by the inclusion of artificial selective damping. Such a PML performs
very effectively as an absorbing boundary condition in an open domain.

4. PML IN DUCTED ENVIRONMENTS

We will now consider the use of PML inside a circular duct of radiusR. Dimensionless
variables with respect to length scaleR, velocity scaleat (speed of sound atr = R), time
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FIG. 13. Waveforms showing the damping of a vorticity wave packet as it is convected into a PML with
artificial selective damping terms.Mx = 0.3,My= 0.2, σm= 1.0, (R−1

1 )max= 1.0.

scaleR
at

, density scaleρt (mean density atr = R), and pressure scaleρta2
t will be used. The

velocity components in the(x, r, φ)directions of a cylindrical coordinate system are denoted
by (u, v, w). For an inviscid compressible flow, the most general mean flow (designated by
an overbar) is

ū = ū(r ), v̄ = 0, w̄ = w̄(r ), ρ̄ = ρ̄(r )

p̄ = −
∫ 1

r

ρ̄w̄2

r
dr + p0. (17)

Small amplitude disturbances superimposed on mean flow (17) are governed by the
linearized Euler equations. They are

∂ρ

∂t
+ 1

r

∂

∂r
(ρ̄vr )+ w̄

r

∂ρ

∂φ
+ ū

∂ρ

∂x
+ ρ̄

(
1

r

∂w

∂φ
+ ∂u

∂x

)
= 0 (18a)

ρ̄

[
∂v

∂t
+ ū

∂v

∂x
+ w̄

r

∂v

∂φ
− 2w̄w

r

]
− ρ w̄

2

r
= −∂p

∂r
(18b)

ρ̄

[
∂w

∂t
+ ū

∂w

∂x
+ vdw̄

dr
+ w̄

r

∂w

∂φ
+ w̄v

r

]
= −1

r

∂p

∂φ
(18c)



        

228 TAM, AURIAULT, AND CAMBULI

ρ̄

[
∂u

∂t
+ ū

∂u

∂x
+ vdū

dr
+ w̄

r

∂u

∂φ

]
= −∂p

∂x
(18d)

∂p

∂t
+ ū

∂p

∂x
+ w̄

r

∂p

∂φ
+ ρ̄w̄

2

r
v + γ p̄

[
1

r

∂vr

∂r
+ 1

r

∂w

∂φ
+ ∂u

∂x

]
= 0, (18e)

whereγ is the ratio of specific heats. The boundary condition at the duct wall is

r = 1, v = 0. (19)

Solutions of (18) and (19) representing propagating wave modes in the duct may be
written in the form 

ρ

u
v

w

p

= Re




ρ̃(r )
ũ(r )
ṽ(r )
w̃(r )
p̃(r )

exp[i (kx+mφ − ωt)]

 . (20)

Substitution of (20) into (18) and (19) leads to the eigenvalue problem

ρ̃ + i

ωr

d

dr
(ρ̄ṽr )− mw̄

ωr
ρ̃ − kū

ω
ρ̃ − ρ̄

(
m

ωr
w̃ + k

ω
ũ

)
= 0 (21a)

ρ̄

[(
1− k

ω
ū− mw̄

ωr

)
ṽ − i

2w̄w̃

ωr

]
− i ρ̃w̄2

ωr
= − i

ω

d p̃

dr
(21b)

ρ̄

[(
1− k

ω
ū− mw̄

ωr

)
w̃ + i

ω
ṽ

dw̄

dr
+ i w̄

ωr
ṽ

]
= m

ωr
p̃ (21c)

ρ̄

[(
1− k

ω
ū− mw̄

ωr

)
ũ+ i

ω
ṽ

dū

dr

]
= k

ω
p̃ (21d)

(
1− kū

ω
− mw̄

ωr

)
p̃+ i

ω

ρ̄w̄2

r
ṽ + γ p̄

[
i

ωr

d(ṽr )

dr
− m

ωr
w̃ − k

ω
ũ

]
= 0 (21e)

r = 1, ṽ = 0. (22)

For a given azimuthal mode numberm and frequencyω, k (the wavenumber) is the eigen-
value. Corresponding to an eigenvalue is an eigenvector [ ˜ρ, ũ, ṽ, w̃, p̃], which describes
the radial profile of the wave mode.

4.1. Perfectly Matched Condition in Ducted Flows

Suppose a perfectly matched layer is to be set up as a termination boundary of a compu-
tation domain inside a duct. By splitting the variables, e.g.,ρ= ρ1+ ρ2, etc., in the stan-
dard manner, the PML equations corresponding to the linearized Euler equations ((18a)



          

PML FOR LINEARIZED EULER EQUATIONS 229

to (18e)) are

∂ρ1

∂t
+ 1

r

∂

∂r
[ρ̄(v1+ v2)r ] + w̄

r

∂(ρ1+ ρ2)

∂φ
+ ρ̄

r

∂(w1+ w2)

∂φ
= 0 (23a)

∂ρ2

∂t
+ σρ2+ ū

∂(ρ1+ ρ2)

∂x
+ ρ̄ ∂(u1+ u2)

∂x
= 0 (23b)

ρ̄

[
∂v1

∂t
+ w̄

r

∂(v1+ v2)

∂φ
− 2w̄(w1+ w2)

r

]
− (ρ1+ ρ2)

w̄2

r
= − ∂

∂r
(p1+ p2) (23c)

ρ̄

[
∂v2

∂t
+ σv2+ ū

∂(v1+ v2)

∂x

]
= 0 (23d)

ρ̄

[
∂w1

∂t
+ (v1+ v2)

dw̄

dr
+ w̄

r

∂(w1+ w1)

∂φ
+ w̄

r
(v1+ v2)

]
= −1

r

∂(p1+ p2)

∂φ
(23e)

ρ̄

[
∂w2

∂t
+ σw2+ ū

∂(w1+ w2)

∂x

]
= 0 (23f)

ρ̄

[
∂u1

∂t
+ (v1+ v2)

dū

dr
+ w̄

r
ū
∂(u1+ u2)

∂φ

]
= 0 (23g)

ρ̄

[
∂u2

∂t
+ σu2+ ū

∂(u1+ u2)

∂x

]
= −∂(p1+ p2)

∂x
(23h)

∂p1

∂t
+ w̄

r

∂(p1+ p2)

∂φ
+ ρ̄w̄

2

r
(v1+ v2)+γ p̄

[
1

r

∂r (v1+ v2)

∂r
+ 1

r

∂(w1+w2)

∂φ

]
= 0 (23i)

∂p2

∂t
+ σp2+ ū

∂(p1+ p2)

∂x
+ γ p̄

∂(u1+ u2)

∂x
= 0, (23j)

whereσ is the damping coefficient in the PML. The boundary condition is

r = 1, v1+ v2 = 0. (24)

In the PML, the duct modes are represented by solutions of the form (similar to (20))

ρ1(r, φ, x, t) = Re
[
ρ̂1(r )e

i (κx+mφ−ωt)
]
, (25)

etc., whereκ is the wavenumber. On substituting (25) into (23) and (24) and on defining

ρ̂ = ρ̂1+ ρ̂2

û = û1+ û2

v̂ = v̂1+ v̂2

ŵ = ŵ1+ ŵ2

p̂ = p̂1+ p̂2

(26)

it is straightforward to find that the duct modes in the PML are given by the solutions of the
eigenvalue problem

ρ̂ + i

ωr

d

dr
(ρ̄v̂r )− mw̄

ωr
ρ̂ − κū

ω + iσ
ρ̂ − ρ̄

(
m

ωr
ŵ + κ

ω + iσ
û

)
= 0 (27a)
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ρ̄

[(
1− κ

ω + iσ
ū− mw̄

ωr

)
v̂ − i

2w̄ŵ

ωr

]
− i ρ̂w̄2

ωr
= − i

ω

d p̂

dr
(27b)

ρ̄

[(
1− κ

ω + iσ
ū− mw̄

ωr

)
ŵ + i

ω
v̂

dw̄

dr
+ i w̄

ωr
v̂

]
= m

ωr
p̂ (27c)

ρ̄

[(
1− κ

ω + iσ
ū− mw̄

ωr

)
û+ i

ω
v̂

dū

dr

]
= κ

ω + iσ
p̂ (27d)

(
1− κū

ω + iσ
− mw̄

ωr

)
p̂+ i

ω

ρ̄w̄2

r
v̂ + γ p̄

[
i

ωr

d(v̂r )

dr
− m

ωr
ŵ − κ

ω + iσ
û

]
= 0. (27e)

The boundary condition is

r = 1, v̂ = 0. (28)

The eigenvalue isκ. On comparing the eigenvalue problem (21) and (22) with the eigenvalue
problem (27) and (28), it is immediately clear that they are the same ifk

ω
in (21) is replaced

by κ
ω+ iσ . Thus the eigenvalues are related by

κ = k

(
1+ iσ

ω

)
. (29)

On the other hand, the eigenvectors are identical. The fact that the eigenvectors of a duct
mode in the interior region of the computation domain is the same as that in the PML assures
that there is perfect matching. That is, a propagating duct mode incident on the PML will be
totally transmitted into the PML without reflection. If the mean flow is nonuniform, some
of the duct modes may involve Kelvin–Helmholtz or other types of flow instability waves.
However, the perfectly matched condition is still valid for these waves.

4.2. The Case of Uniform Mean Flow

From (25) and (29), the transmitted wave mode has the form

[ρ̂(r ), û(r ), v̂(r ), ŵ(r ), p̂(r )]ei [k(1+ iσ
ω
)x+mφ−ωt ] . (30)

If the wave mode is nondispersive, thenk
ω

, the inverse of the phase velocity, is positive
for waves propagating in thex-direction and negative in the opposite direction. For these
nondispersive waves, the transmitted waves are spatially damped, a condition needed by
the PML if it is to serve as an absorbing boundary condition. However, inside a duct, the
wave modes are dispersive. The direction of propagation is given by the group velocitydω

dk .
We will now show that in the presence of a uniform mean flow there is a band of acoustic
duct modes for which the group velocity and the phase velocity have opposite signs. There-
fore, for this band of waves, the transmitted waves would grow spatially instead of being
damped.

By eliminating all the other variables in favor ofp̃(r ), it is straightforward to find, in the
case of a uniform mean flow of Mach numberM , (21) and (22) reduce to the following
simple eigenvalue problem,

d2 p̃

dr2
+ 1

r

d p̃

dr
+
[
(ω − Mk)2− k2− m2

r 2

]
p̃ = 0 (31)
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r = 1,
d p̃

dr
= 0. (32)

The eigenfunction is

p̃ = Jm(λmnr ), (33)

whereJm( ) is themth order Bessel function andλmn is thenth root of

J ′m(λmn) = 0. (34)

By substitution of (33) into (31), it is found that the dispersion relation or eigenvalue
equation for the(m, n)th acoustic duct mode is

(ω − Mk)2− k2 = λ2
mn. (35)

The axial wavenumbers of the mode at frequencyω are given by the solution of (35). They
are

k± =
−ωM ± [ω2− (1− M2)λ2

mn

] 1
2

(1− M2)
. (36)

The group velocity of the duct mode may be determined by implicit differentiation of (35).
This gives

dω

dk
= ±

[
ω2− (1− M2)λ2

mn

] 1
2 (1− M2)

ω ∓ M
[
ω2− (1− M2)λ2

mn

] 1
2

. (37)

In (37), the upper sign corresponds tok= k+ and the lower sign corresponds tok= k−.
For subsonic mean flow, clearlydωdk > 0 for k= k+ and dω

dk < 0 for k= k−. Therefore, the
downstream propagating waves have wavenumber given byk= k+, while the upstream
propagating waves have wavenumber equal tok−.

From (37), it is easy to show that for(1− M2)
1
2λmn<ω<λmn the phase velocityk+

ω

is negative although the group velocity is positive. According to (29), for waves in this
frequency band, the transmitted wave in the PML will amplify spatially. This renders the
PML useless as an absorbing layer except forM = 0. In the absence of a mean flow normal
to the PML(M = 0), k+ will not be negative by (36). Thus, the transmitted waves in the
PML are evanescent. For this special condition, the PML can again be used as an absorbing
boundary condition.

4.3. Numerical Examples

To demonstrate that a PML in a ducted environment actually supports a band of amplifying
wave modes, a series of numerical simulations has been carried out. In the simulations, a
uniform mesh with1x=1r = 0.04 covering the entire computation domain fromx=−6.0
to x= 12.0 is used. The PML in the upstream direction begins atx=−3.0 and extends
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to x=−6.0. In the downstream direction, the PML occupies the region fromx= 3.0 to
x= 12.0. The dimensionless damping constant (nondimensionalized bya∞

R ) σ is set equal
to 25.0. The results of two simulations, one with a mean flow Mach number 0.4, the other
two no mean flow, are reported below.

For convenience, only the axisymmetric duct modes are considered. The computation
uses the 7-point stencil DRP scheme [13]. The acoustic disturbances in the computation
domain are initiated by a pressure pulse located atx= 0 andr = 0.5. The initial condi-
tion is

t = 0, u = v = 0, p = ρ = exp

[
−(ln 2)

(x2+ (r − 0.5)2)

16

]
. (38)

Figure 14 shows the time evolution of the acoustic disturbance inside the computation
domain atM = 0.4. Specifically, the pressure waveforms along the liner = 0.38 are shown
at t = 10, 13, 15, and 16. As can be seen, once the pressure pulse is released, it spreads out
and propagates upstream and downstream. Figure 14a indicates that at timet = 10 the front
of the acoustic disturbance has just entered the PML in the downstream direction. There is no
evidence of wave reflection at the interface between the PML and the interior computation
domain. The transmitted wave grows spatially as shown in Fig. 14b. The amplitude of the
transmitted wave increases steadily as they propagate across the PML. This is shown in

FIG. 14. Pressure waveforms along the liner = 0.38 of a circular duct with uniform mean flow at Mach 0.4
showing the excitation and growth of the unstable solution in the PML by an acoustic pulse.1x=1r = R

25
,

σm= 25.0.
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FIG. 15. Pressure waveforms along the liner = 0.38 of a circular duct without mean flow showing the damping
of an acoustic pulse in the PML.1x=1r = R

25
, σm= 25.0.

Figs. 14c and 14d. When the amplified waves reach the outermost boundary of the PML,
large amplitude spurious waves are reflected back. This quickly contaminates the entire
computation domain.

Figure 15 shows the same simulation except that there is no mean flow. In the absence of
a mean flow, the PML acts as an absorbing layer. Figure 15a shows the entry of the acoustic
pulse into the downstream PML. Figures 15b to 15d show the damping of the acoustic
pulse in time in the PML. The slowest components to decay are the long waves. This is in
agreement with the analysis of the previous section.

5. CONCLUDING REMARKS

In this paper, we have shown that the application of PML as an absorbing boundary
condition for the linearized Euler equations works well as long as there is no mean flow
in the direction normal to the layer. For open domain problems, the PML equations, in
the presence of a subsonic mean flow normal to the layer, support unstable solutions. The
growth rate of the unstable solutions is, however, not large. These unstable solutions can,
generally, be suppressed by the addition of artificial selective damping. In the case of a
ducted environment, we find that because of the highly dispersive nature of the duct modes,
a band of the transmitted waves in the PML amplifies instead of being damped. This band
consists of long waves so that they are not readily suppressed by the inclusion of artificial
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selective damping. This seemingly renders the PML totally ineffective as an absorbing
boundary condition.

One of the important advantages of using an absorbing boundary condition instead of
other numerical boundary treatments is that the boundary of the computation domain may
be put much closer to the source of disturbances. In this way, a smaller computation domain
may be used in a numerical simulation. For open domains, such an absorbing boundary
condition can be developed by the use of PML with artificial selective damping terms.
Unfortunately, the same is not possible for internal ducted flow. An effective numerical
anechoic termination for ducted domains has yet to be developed.
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