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Recently, perfectly matched layer (PML) as an absorbing boundary condition
has found widespread applications. The idea was first introduced by Berenger for
electromagnetic waves computations. Inthis paper, itis shown thatthe PML equations
forthe linearized Euler equations support unstable solutions when the mean flow has a
component normal to the layer. To suppress such unstable solutions so as to render the
PML concept useful for this class of problems, it is proposed that artificial selective
damping terms be added to the discretized PML equations. It is demonstrated that
with a proper choice of artificial mesh Reynolds number, the PML equations can
be made stable. Numerical examples are provided to illustrate that the stabilized
PML performs well as an absorbing boundary condition. In a ducted environment,
the wave modes are dispersive. It will be shown that in the presence of a mean
flow the group velocity and phase velocity of these modes can have opposite signs.
This results in a band of transmitted waves in the PML to be spatially amplifying
instead of evanescent. Thus in a confined environment, PML may not be suitable as
an absorbing boundary condition unless there is no mean flewess Academic Press

1. INTRODUCTION

Recently, Berenger [1, 2] succeeded in formulating an absorbing boundary conditio
computational electromagnetics that has the unusual characteristic that when an out
disturbance impinges on the interface between the computation domain and the abst
layer surrounding it, no wave is reflected back into the computation domain. In other we
all the outgoing disturbances are transmitted into the absorbing layer where they are de
out. Such a layer has come to be known as a perfectly matched layer (PML).

Since its initial development, PML has found widespread applications in elastic w
propagation [3], computational aeroacoustics, and many other areas. Hu [4] was the f
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apply PML to aeroacoustics problems governed by the linearized Euler equations, lineatr
over a uniform mean flow. He has since extended his work to nonuniform mean fl
and for the fully nonlinear Euler equations [5]. Further applications of PML to acousti
problems including wavemodes in ducts can be found in the most recent works of
and co-workers [6, 7]. In these references, examples are provided that indicate that
quality numerical solutions could be found with PML used as radiation or outflow bound:
conditions.

In open unbounded domains, acoustic waves are nondispersive and propagate wit
speed of sound relative to the local mean flow. Inside a duct, the situation is comple
different. Acoustic waves are repeatedly reflected back by the confining walls. For dt
with parallel walls, the continuous reflection of the acoustic waves by the wall leads to
formation of coherent wave patterns called duct modes [8, 9]. Unlike the open dom:
duct modes are dispersive with phase and group velocities vary with axial wavenum
Because of the dispersive nature of the duct modes many radiation boundary condition:
work well in open domains are known to be inappropriate for ducted environments. For
reason, Tam [10] in a recent review on numerical boundary conditions for computatio
aeroacoustics suggested that the boundary condition for a ducted environment be reg
as a category of its own.

There are three primary objectives in this work. First, we intend to show that in t
presence of a mean flow normal to a PML, the standard PML equations of the lineari
Euler equations support unstable solutions. Earlier Tam [10] pointed out that the P
equations with mean flow have unstable solutions. However, he did not show that
existence of instabilities is due to the mean flow component normal to the layer. The or
and characteristics of these instabilities are investigated and analyzed. It is interestir
mention thatin his earliest work, Hu [4] reported that his computation encountered numer
instability. But by applying numerical filtering, he was able to obtain stable solutions.
light of our finding, we believe that what Hu encountered was not instability of his numeric
scheme but that his numerical solution inadvertently excited the intrinsic unstable solu
ofthe PML equations. Not directly related to the instability of the PML equations, Abarbat
and Gottlieb [11] recently analyzed the electromagnetic PML equations. They conclu
that the equations are only weakly well-posed.

Second, we will show that the instability is not very strong, namely, the growth rates
small. Also the instabilities are confined primarily to short waves. It is, therefore, possi
to suppress the instabilities by the addition of artificial selective damping terms [12]
the discretized PML equations. It is important to point out that artificial selective dampi
eliminates mainly the short waves and has negligible effect on the long or the phys
waves. Thus the addition of these damping terms does not effect the perfectly mat
conditions of the PML.

Third, we will show that a perfectly matched layer may not be suitable as an absork
boundary condition for waves in a ducted flow environment. The major difference betw
acoustic waves in an open domain and acoustic waves inside a duct is that in an unbou
region acoustic waves are nondispersive whereas duct modes are dispersive. It will be s|
that in the presence of a mean flow the group and phase velocity of the duct modes can
opposite signs. Because of this, a band of transmitted waves will actually grow spati
instead of being damped in the PML. In other words, the PML equations do not damp tt
wave modes as absorbing boundary condition ought to do. The exception is when there
mean flow in the duct. In this special case, all the transmitted waves are spatially dam
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In Section 2, the use of PML for open domain problems is discussed. The stabilit
the PML governing equations is investigated. It will be shown that the addition of dar
ing terms to form the PML equations can actually cause the vorticity and acoustic w
modes to become unstable. The splitting of the variables in formulating the PML equat
leads to a higher order system of equations. This higher system supports extra solu
These extra or spurious solutions are found to become unstable when the damping coeff
is large. Numerical examples are provided to illustrate the spread of the unstable sol
from the PML back into the interior of the computation domain.

In Section 3, the effect of the addition of artificial selective damping terms to the ¢
cretized PML equations is investigated. It is shown that with an appropriate choice
mesh Reynolds humber, the unstable solutions of the PML equations can be suppre
Numerical examples are given to demonstrate the effectiveness of the modified PML
radiation/outflow boundary condition.

Section 4 deals with the theory and application of PML to ducted internal flow probler
An eigenvalue analysis is carried out to show the existence of a band of frequency for w
the PML exerts no damping on the acoustic duct modes. These wave modes actually v
grow in amplitude as they propagate through the PML. Numerical results are provide
illustrate the existence of this kind of amplifying ducted acoustic modes.

2. OPEN DOMAIN PROBLEMS

Let us consider the use of PML as absorbing boundary condition for the solution of
linearized Euler equations (linearized over a uniform mean flow) in a two-dimensional o
domain as shown in Fig. 1. We will usex = Ay (the mesh size) as the length scalg,
(the sound speed) as the velocity sc%gé,as the time scale, aneha3 (where pg is the

Y

PML

Ny

interior domain

FIG. 1. Two dimensional computation domain with Perfectly Matched Layers as boundaries.
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mean density) as the pressure scale. The dimensionless governing equations in the
are formed by splitting the linearized Euler equations according to the spatial derivati
An absorption term is added to each of the equations with spatial derivative in the direc
normal to the layer. For example, for the PML on the right boundary of Fig. 1 (not at t
corners) the governing equations are [4]

ouq 0 d

— u My—(u u — =0

ot +oup + XBX( 1+ 2)+8X(p1+ p2)
dUs d
— 4+ My—(u u,) =0
ot + yay( 1+ Uz)

Jv 0
a—tl+ov1+ My 01+ v2) = 0 o
802

0 0
Bt + Mya—y(v1+v2) + a*y(pl-i- p2) =0

ap1 d 0
—_— My — — =0
T +op1+ Xax(pl+ p2) + 8x(ul+u2)

P2 a 0
— + My— — =0,
ot + yay(pl + p2) + ay(vl + v2)
where M, and My are the mean flow Mach numbers in theandy directions.o is the
absorption coefficient.

Suppose we look for solutions wiR, y, t) dependenceinthe form exgkx + 8y — wt)].
Itis easy to find from (1) that the dispersion relations of the PML equations are

2 2 2
1 aM.X _ﬁMy B Ol. _,3720 @
w+io 1) (w+ioc)?2 w?
M M
_ M PMy 3)
w+lo 0]

In the limito — 0, (2) and (3) become the well-known dispersion relations of the acous
and the vorticity waves of the linearized Euler equations.

2.1. Mean Flow Parallel to PML

Dispersion relations (2) and (3) behave very differently depending on whether ther
any mean flow normal to the PML. When the mean flow is parallel to the layeiMie= 0,
the solutions are stable. This is easy to see from (3) for the vorticity wave. Physically
the mean flow is parallel to the PML, the vorticity waves in the computation domain, bei
convected by the mean flow, cannot enter the layer and hence would not lead to uns
solution.

To show that foiM, = 0 all the solutions of (2) are stable, a simple mapping will suffice
Rewrite (2) in the form

o?w?

—(_ 2 @t
F=(=FMy (w+io)?

= % )

Figure 2 shows the image of the upper-halplane in theF plane. The upper-half-plane
is mapped into the entirE plane except for the sliADC. But sinceg? is real and positive,
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FIG. 2. Theimage of the upper haif-plane in theF-plane.

for subsonic mean flow the poi® lies outside the image. Thus no value ®fin the
upper-halfw-plane would satisfy Eq. (2) indicating that there is no unstable solution.

2.2. Unstable Solutions of the PML Equations

For My #£ 0, the PML equations support unstable solutions. It is to be noted that, un
the original dispersion relation of the acoustic waves, Eq. (2) is a quadric equatioitin
has two extra roots in addition to the two modified acoustic modes. For sméle two
spurious roots are damped but one of the modified acoustic roots is unstable. Fos |Jarg
numerical solutions indicate that one of the spurious roots becomes unstable. In any
the equation splitting procedure and the addition of an absorption term, both are vital tc
suppression of reflections at the interface between the computation domain and the |
inadvertently, lead to instabilities.

For smallo, the roots of (2) and (3) can be found by perturbation. Let

0® = a)(()a) + Ga)ga) + sz;a) + - (5)
oW = w(()v) + oa)iu) + Uza);v) + .-, (6)

where the roots of (2) and (3) are designated by a superscipt acoustic waves) and
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(for vorticity waves). Substituting (5) and (6) into (2) and (3), it is straightforward to find

of =0y, ., 0 0 )
where
ws = @My + BMy) £ (@? + ) ®)
o =i o’ FaMx@’+ g ©
a?+ B2 £ (aMy + BMy)(? + B?)2
o)) = aMy+ My, 0 (9a)
o’ = ! : (9b)

14+ (My/Mx)(B/a)

Clearly ifo® or »{" has a positive imaginary part, the mode is unstable. It is easy to shc
especially in the caskly = 0, that there are always valuescofindg such thato(a) of (9)

is purely imaginary and positive. Similarly, from (9b) f8r< 0 and| ﬁ| > X (”) is also
purely positive imaginary. Thus the PML equations in the presence of a umform flow w
My # 0 support unstable solutions.

The unstable solutions of dispersion relations (2) and (3) can also be found numeric.
For a given(a, B) the growth ratesw;, of the unstable solutions can be calculated in :
straightforward manner. Figure 3 shows thecontours of the most unstable solution of
Eq. (2), the acoustic mode, in the- g-plane for the caskly, = 0.3, My = 0.0, ands = 1.5.
Figure 4 shows a similar plot for the vorticity wave mode (Eq. (3)). In these figures or
the unstable regions are shown. Itis clear that there are instability waves over a wide r:
of wavenumbers. Numerical results indicate that, in general, the unstable regions ex|
as the flow Mach number or the damping coefficienhcreases.

3.0

2.0

-2.0

-3.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

FIG. 3. Contours of the growth rate of the most unstable wave (acoustic mode) in thg plane.
M, =0.3, My=0.0,0 =1.5.
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FIG. 4. Contours of the growth rate of the most unstable vorticity wave indtheg plane. M, =0.3,
M, =0.2,0 =1.0.

2.3. Numerical Examples

The nature and characteristics of the unstable waves associated with the acoustic mo
the vorticity mode are quite different. Toillustrate the excitation of these unstable solutior
the PML by disturbances propagating or convecting from the interior computation doma
series of numerical experiments has been carried out. Figure 5 shows the results of the
avorticity pulse convected into the PML whity = 0.3, My = 0.2, ands = 1.0. The initial
conditions for the pulse are (same as the initial conditions used by Tam and Webb [13

_ X2 + y2
u= 0.04yexp{—(ln 2)( 25 )] (10)

B X2 4 y?
v = —0.04x exp[—(ln 2)( 25 ﬂ

The DRP time marching scheme [13] is used in the simulation. The PML region exte
from x = 20 to the right boundary of the computation domain. At the outermost bound:
the boundary conditiom; = p, = p1 = p2 =U; = Uz =v1 = v, =0 is imposed. Plotted in
Fig. 5 are contours of the velocity component. Figure 5a shows the initial profile of th
contours at = 0. Figure 5b, at =50, reveals that there is damping of the vorticity puls
as it begins to enter the PML. This damping is the result of the built-in damgingf, the
PML. Figure 5c, at a later time= 90, shows the growth of the excited unstable solutic
in the PML. Finally, Fig. 5d (at = 130) shows the spread of the unstable solution ba
into the interior computation domain. Figure 6 gives the corresponding waveform of
vorticity wave pulse. Figure 6d clearly indicates that the spread of the unstable vorti
waves in the PML can quickly contaminate the entire computation domain.
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FIG. 5. Numerical simulation showing the generation and propagation of unstable vorticity-mode wave:
the PML.M, =0.3, My = 0.2, 5, = 1.0. (a)t =0, (b) t =50, (c)t =90, (d)t = 130. Contours of the velocity
component. —, 4, --, 0.05; ——, 0.01; — - —,-0.01; -- —,-0.05; - - -, —0.1.

Figures 7 and 8 are similar plots illustrating the excitation of the acoustic mode unste
solution in the PML. The Mach number and damping coefficient\dge= 0.5, My = 0.0,
ando = 1.5. The initial disturbance consists of a pressure pulse given by

e (57

v=20.

The acoustic pulse generated by the initial disturbance propagates at a speed equal
sound speed plus the flow velocity. Thus, the pulse leaves the small interior computs
domain(50 x 50) very quickly. Figure 7a shows the pressure contouts=at40. At this

time, the acoustic pulse is gone. The contours are associated with the excited unstable
of the acoustic mode. These unstable waves move at a slow speed. Figure t7h 20t

On comparing Figs. 7a and 7b, it is evident that there is significant growth of the unste
waves. Upon reaching the outermost boundary of the computation domain the unstable
ves are reflected back as short waves. This is illustrated in Fig. 7c. The reflected short w
propagate at ultrafast speed. They contaminate the computation domain in a short p

+y

P (11)

U=
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FIG. 6. Waveforms olu showing the generation of unstable vorticity-mode waves excited by vorticity wav
convected from the interior computation domain to the PML and the subsequent contamination of the int
computation domainM, =0.3, My =0.2, o, = 1.0.

of time as shown in Fig. 7d. Figure 8 shows the growth of the pressure waveform of
unstable acoustic mode waves in the PML before they reach the outer boundary o
computation domain. The measured growth rate of the most unstable wave has been
to agree with that calculated by the dispersion relation.

3. DEVELOPMENT OF A STABLE PML

3.1. Artificial Selective Damping

To ensure practicality, the thickness of a PML would normally be limited to around 1-
20 mesh spacings. For a PML with such a thickness, it is easy to show that if the transi
wave from the computation domain is to be reduced by a factor ®frLéhe presence
of a subsonic mean flow, the damping coefficiendf (1) should have a value of about
1.5. By solving the dispersion relations (2) and (3) numerically, it has been found tha
o = 1.5 the unstable wave solutions have only a modest rate of growth. Moreover, tt
waves, generally, have short wavelengths. Mild instabilities of this type can be effecti
suppressed by the addition of artificial selective damping terms [12, 14] to the discret
governing equations. The advantage of using artificial selective damping is that the darr
is confined primarily to short waves. Thus, the perfectly matched condition is not adver
affected for the long waves (the physical waves) of the computation.
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FIG.7. Numerical simulation showing the generation and propagation of unstable acoustic-mode waves il
PML. M, =0.5, My =0.0, o, = 1.5. Contours of pressure. (&)= 140 —p=10*% (b)t =200, —p=5.10"3;
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Consider the first equation of (1). L&t, m) be the spatial indices in the- and
y-directions. The semi-discretized form of this equation using the DRP scheme with ar
cial selective damping terms added to the right side is

3

d
Gr(UDim + oW+ > &[Me(U1+Ua)isjm + (PL+ P2l m]
t =,

1

3
— _R_ Z dJ [(u1)|+j_m + (ul)|,j+m]’ (12)
A j=—3

whered;’s are the artificial selective damping coefficients [14] aagzawﬁ—: is the
artificial mesh Reynolds number. Terms similar to those on the right side of (12) are tc
added to all the other discretized equations.

For the purpose of suppressing unstable solutions in the PML, we recommend the

of a damping curve with a slightly larger half-width then those given in Ref. [14]. In th
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FIG. 8. Waveforms of pressure along= 0 showing the generation of unstable acoustic-mode waves in tl

PML excited by acoustic disturbances from the computation dorir= 0.5, M, =0.0, o1, = 1.5.

work, the following damping coefficients (half-width0.357) are used:

do = 0.3705630354

dy = d_; = —0.2411788110
d, = d_, = 0.0647184823
d; = d_3 = —0.0088211899

(13)

The damping rate of the artificial selective damping terms can be found by taking
Fourier transform of the right side of (12) (see [12]). Let §) be the transform variables
in the (x, y)-plane. The rate of damping for wavenumbey §) is

. 1
damping rate= — D(a, B), (14)
Ra
where
D(e. ) = Y _ dj(e!* +¢€¥). (15)
j=—3

Contours of the damping functidd (e, 8) in thea — -plane are shown in Fig. 9.
To demonstrate that suppression of the unstable solutions can be achieved by a
artificial selective damping terms to the discretized form of Eq. (1), let us consider
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FIG. 9. Contours of constariD(a, 8) in thea — 8 plane. Damping coefficientj’s are given by (13).

unstable solution with growth rate given by Fig. 3. On combining the growth rate of Fig
and the damping rate of Fig. 9 witR, =1.421, the resulting growth contours, (@) —

D(a, B)/Ra), are shown in Fig. 10. Outside the dotted lines (wavenumbers inside 1
vertical dotted lines correspond to wavelengths too long to fit into a 15 mesh spacing PI

-3.0
L

FIG.10. Contoursof combined growth and damping radds= 0.3, M, = 0.0, 0 = 1.5, R, = 1.42. Damping
coefficientsd;’s are given by (13).
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the combined effects result in damping of the waves. Thus all the instabilities of the P
equations are effectively suppressed.

3.2. Distributions ofo and R;* in the PML

In the implementation of PML as an absorbing boundary condition, Hu [4] sugges
letting o vary spatially in the form

o =Gm(%>)\, (16)

whereD is the thickness of the PML] is the distance from the interface with the interio
domain, and. is a constant. With the inclusion of artificial selective damping, we have fou
that the use of a well-designed smooth distributiors cdind R;l at the interface region
is important if the perfectly matched condition is to be maintained in the finite differer
form of the system of equations.

Figure 11 shows a distribution of and R;* we found to work well with the 7-point
stencil DRP scheme. ThR* curve is zero for the first two mesh points closest to th
interface. It attends its full vaIu(aRgl)max at the 6th mesh point. A cubic spline curve is
used in the transition region. With this arrangement, the first point where artificial damg
occurs is the third point from the interface. This allows the use of the 7-point symme
damping stencil in the PML except the last three points at the outer boundary. For tl
points, the 5-point and the 3-point stencil [14] should be used instead.

Theo curve begins with the value =0 at the fifth mesh point from the interface. The
full value omayx is reached at 8 mesh points further away. Again, a cubic spline curve is u
in the transition region. The choice of starting theurve at the fifth point is to ensure that
the Ry* curve has attained its full value wherbecomes nonzero.

S

Interior

Domain <

o

Interior |
Domain | PML

FIG. 11. Distributions ofo andR;* in a 20 mesh spacings PML.
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FIG. 12. Damping of a vorticity wave packet in the PML including artificial selective damping terms
M =0.3, My =0.2, 01,=1.0, (R{)max=1.0. (@)t =0, (b) t =50, (c)t=90, (d)t=170. Contours of thes
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3.3. Numerical Examples

To demonstrate the effectiveness of using artificial selective damping terms to supp
the instabilities of the PML equations, the numerical examples of Subsection 2.3 are re
sidered here. Artificial damping is now included in the simulations. Figure 12 shows
u-contours of the vorticity waveeMy, = 0.3, My = 0.2, oy = 1.0, (Rgl)maxz 1.0) as they
are convected from the interior domain to the PML. The vorticity wave packet is steac
damped. No sign of unstable waves of the type shown in Fig. 5 is detected. Figure 13 st
the corresponding waveform ofat a few selected times. Itis clear that the pulse is dampe
continuously once it propagates into the PML. The case of the acoustic disturbance has
been repeated with similar results. Based on these findings, it is concluded that a stable
can be developed by the inclusion of artificial selective damping. Such a PML perfor
very effectively as an absorbing boundary condition in an open domain.

4. PML IN DUCTED ENVIRONMENTS

We will now consider the use of PML inside a circular duct of radRu®imensionless
variables with respect to length scad®e velocity scales; (speed of sound at= R), time
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FIG. 13. Waveforms showing the damping of a vorticity wave packet as it is convected into a PML w
artificial selective damping termsl, =0.3, My =0.2, o, = 1.0, (R;l)max= 1.0.

scaleg, density scale; (mean density at= R), and pressure scafga? will be used. The
velocity componentsinthg, r, ¢) directions of a cylindrical coordinate system are denote
by (u, v, w). For an inviscid compressible flow, the most general mean flow (designatec
an overbar) is

u=u(), v=0, w = w(), o =p()

!

P
—/ , —dr + po. a7)
Jr

Small amplitude disturbances superimposed on mean flow (17) are governed by
linearized Euler equations. They are

dp 190 w dp _8,0 low
i Z__(pur — - — =0 18a
at+r8r( )+ 8¢+ 8xJr (ra¢+ ) (182)
_[ov v wav 2ww w? p
R ot [N e 18b
p[at+u8x+r8¢ r } pr ar (18b)
fow _dw dw wow wv 1lap
— u— -t — | == 18c
p[at x TVar T e r] r o (18¢)
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ou  _du du wau _ap
— tv— 4 —— | = 18d
{atJr” T, ra¢} ox 189
ap Jap+w3p+ ow? ot _18vr+13w au] (18¢)
ot r g r YPI r r g 7

wherey is the ratio of specific heats. The boundary condition at the duct wall is
r=1, v=0. (29)

Solutions of (18) and (19) representing propagating wave modes in the duct may
written in the form

o p(r)
u Gr)
v |=Re o(r) | expli(kx+ m¢ — wt)] » . (20)
w w(r)
p p(r)

Substitution of (20) into (18) and (19) leads to the eigenvalue problem

mw ku —/m k
p+ff(p N ——h=—h- p<rw+wu) =0 (21a)
ey e o
Kl_hg_m)v_i%_w}_m_w:_'_@ (21b)
1) wf wr wr o dr
;{(1_55—@)%'—5‘1—%'—“’5 L )
w wl w r r
k _ w U k
p[(l——u—m—>ﬁ+l—ﬁ% =-p (21d)
w wl w dr | w
_ L A ;
(1_@_m>p+'_&,;+y5['_d<vr>_m@_bg ~0 (21¢)
o  or o r wr dr r o |
r=1 9=0. (22)

For a given azimuthal mode numbmrand frequencw, k (the wavenumber) is the eigen-
value. Corresponding to an eigenvalue is an eigenvegtds, [V, w, p], which describes
the radial profile of the wave mode.

4.1. Perfectly Matched Condition in Ducted Flows

Suppose a perfectly matched layer is to be set up as a termination boundary of a co
tation domain inside a duct. By splitting the variables, eogs p1 + 02, €tc., in the stan-
dard manner, the PML equations corresponding to the linearized Euler equations ((
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to (18e)) are

o o] I DAY gy
3t 2 4 oppt Ja(ma-)l(— 02) n p—a(Ula-)i(- U2 _ 0 (23b)
_[% + ?a(vla; V) _ Zg(wf_ wz)} —(p1+ ;Oz)ur}z = —%(pl + p2) (23c)
_{aa_t bovp+ ‘—8(“18:: ”2)] 0 (23d)
'O_{aa—t + (v1 + vz)—_ l:ia(wla; ) + ?(Ul + vz)] = —%78(&8?; P) (23e)
ﬁ[% +ows+ 578(“’18:: “’2)] 0 (23f)
Bt + (v + vz)—_+ E 78@18; UZ)] 0 (239)
—[% our+ JW} - APt P (23h)
%Jﬁ:’a(m&i;pz) (U1+v2)+J/p{ ar(v;:ruz)ﬂ}a(wng)] =0 (23
3822 - Ja(pla_)l(_ p2) +y 58(U131_ u) _ 0 23)

whereo is the damping coefficient in the PML. The boundary condition is
r=1, vy + v =0. (24)

In the PML, the duct modes are represented by solutions of the form (similar to (20)
pr(r, ¢, X, 1) = Re[py (e M=V ], (25)

etc., wherex is the wavenumber. On substituting (25) into (23) and (24) and on definin

p = p1+ P2
Gd=0.+10;
=701+ 02 (26)
W= Wi+ Wy
p=p+ P

it is straightforward to find that the duct modes in the PML are given by the solutions of
eigenvalue problem

mw Ku m K
— - —p - - 0 —0) =0 27a
'0+ (pv) '0 a)—f-la'o p(a)r +a)+la ) ( )
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_ _ 0 2wl i pw? i dp
p[(l_ « u_@);,_iﬂ}_w_wz_'_@ (27b)

w+Ilo wr wr wr w ar

_ Kk — mw). i.dw iw, m _
oll1- —U—— |0+ —0—+—0|=—0p (27¢)

w—+lo wrl ) r r wl

_ K _— mw i .du K
1- —Uu—— |0+ —0v—| = —p 27d
'0[( w+lo or +a)v 1 a)+|0p ( )
_ _ N, Ao

<1— e —@>A+'—&ﬁ+y5['——(”)—mw— < a}zo. (27€)

wtio wr w T or dr orf w+io

The boundary condition is
r=1, v=0. (28)

The eigenvalue ig. On comparing the eigenvalue problem (21) and (22) with the eigenval
problem (27) and (28), it is immediately clear that they are the sa%i;lmi(m) is replaced
by ——. Thus the eigenvalues are related by

w+io

K=k<1+ ';") (29)

On the other hand, the eigenvectors are identical. The fact that the eigenvectors of a
mode in the interior region of the computation domain is the same as that in the PML ass
that there is perfect matching. Thatis, a propagating duct mode incident on the PML wil
totally transmitted into the PML without reflection. If the mean flow is nonuniform, sornr
of the duct modes may involve Kelvin—Helmholtz or other types of flow instability wave
However, the perfectly matched condition is still valid for these waves.

4.2. The Case of Uniform Mean Flow
From (25) and (29), the transmitted wave mode has the form
[H(). G(r), D), i(r), pr)]eikrsrcme=et, (30)

If the wave mode is nondispersive, thém the inverse of the phase velocity, is positive
for waves propagating in the-direction and negative in the opposite direction. For thes
nondispersive waves, the transmitted waves are spatially damped, a condition neede
the PML if it is to serve as an absorbing boundary condition. However, inside a duct,
wave modes are dispersive. The direction of propagation is given by the group v%lpcity
We will now show that in the presence of a uniform mean flow there is a band of acou
duct modes for which the group velocity and the phase velocity have opposite signs. Th
fore, for this band of waves, the transmitted waves would grow spatially instead of be
damped.

By eliminating all the other variables in favor §fr), it is straightforward to find, in the
case of a uniform mean flow of Mach numhidr, (21) and (22) reduce to the following
simple eigenvalue problem,

d?p  1dp 2 2 ML
gz trar T (w—Mk)_k_r_z p=0 (31)
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dp
=1 = =0. 2
r=1 5 =0 (32)
The eigenfunction is
f) = Jm()hmnr), (33)

whereJn( ) is themth order Bessel function aridy, is thenth root of
‘Jr/n()hmn) =0. (34)

By substitution of (33) into (31), it is found that the dispersion relation or eigenval
equation for the&m, n)th acoustic duct mode is

(w—MK)? —k?=22 (35)

The axial wavenumbers of the mode at frequesa@re given by the solution of (35). They
are
—oM % [w? — (1— M2)32, ]2

ke = (1— M2

(36)

The group velocity of the duct mode may be determined by implicit differentiation of (3
This gives

do  +[w? — (1—MHZ ] 1-M?)

(37)

dk G FM[w?— (1 - M2)2,]?

In (37), the upper sign correspondskte- k. and the lower sign correspondske=k_.
For subsonic mean flow, clear%ﬁf >0 fork=k, and % <0 for k=k_. Therefore, the
downstream propagating waves have wavenumber givek=bi(, , while the upstream
propagating waves have wavenumber equél to

From (37), it is easy to show that fot — Mz)%kmn < < Amn the phase velocity‘fwi
is negative although the group velocity is positive. According to (29), for waves in tl
frequency band, the transmitted wave in the PML will amplify spatially. This renders
PML useless as an absorbing layer excepMos 0. In the absence of a mean flow norma
to the PML(M =0), k. will not be negative by (36). Thus, the transmitted waves in tt
PML are evanescent. For this special condition, the PML can again be used as an absc
boundary condition.

4.3. Numerical Examples

To demonstrate thata PML in aducted environment actually supports a band of amplif
wave modes, a series of numerical simulations has been carried out. In the simulatic
uniform mesh withAx = Ar = 0.04 covering the entire computation domain frem —6.0
to x =120 is used. The PML in the upstream direction beging at—3.0 and extends



232 TAM, AURIAULT, AND CAMBULI

to x =—6.0. In the downstream direction, the PML occupies the region from3.0 to

x =12.0. The dimensionless damping constant (nondimensionalizég by is set equal
to 25.0. The results of two simulations, one with a mean flow Mach number 0.4, the ot
two no mean flow, are reported below.

For convenience, only the axisymmetric duct modes are considered. The compute
uses the 7-point stencil DRP scheme [13]. The acoustic disturbances in the comput:
domain are initiated by a pressure pulse located-at0 andr =0.5. The initial condi-
tion is

X2+ (r —0.5)?)

t =0, =v=0, =p= —(In2
u=v p=p exp[(n) 16

(38)
Figure 14 shows the time evolution of the acoustic disturbance inside the computa
domain atM = 0.4. Specifically, the pressure waveforms along thedire0.38 are shown
att =10, 13, 15, and 16. As can be seen, once the pressure pulse is released, it spreac
and propagates upstream and downstream. Figure 14a indicates thattat tifd¢he front
ofthe acoustic disturbance has just entered the PML in the downstream direction. There
evidence of wave reflection at the interface between the PML and the interior computa
domain. The transmitted wave grows spatially as shown in Fig. 14b. The amplitude of
transmitted wave increases steadily as they propagate across the PML. This is shov

0 O T T T T ]

S Tt=10.0 :

o i E

o F —:\/\A_/\—/\:V*———————
i ; i ;

n) T 1 T

o ' .

L (o) t = 13.(%3

PML

6.0

FIG. 14. Pressure waveforms along the line- 0.38 of a circular duct with uniform mean flow at Mach 0.4
showing the excitation and growth of the unstable solution in the PML by an acoustic pidse Ar = Z—RS
om=25.0.



PML FOR LINEARIZED EULER EQUATIONS 233

I T T
gF@t=109 ; 1
3L :

e !

| : | :
8F@©t=500 § ]
°© ' '

P : §

: : : :
SF©t=100d0 g 1
SE ——— :

e 1 '
| : | :

[T} _ .
SL@t= 1500 i ]
gl
o —
8 : : PML
OI [ L 1 L

—6.0 -3.0 0.0 3.0 6.0

X

FIG.15. Pressure waveforms along the line 0.38 of a circular duct without mean flow showing the damping
of an acoustic pulse in the PMIAX = Ar = 235 om=250.

Figs. 14c and 14d. When the amplified waves reach the outermost boundary of the F
large amplitude spurious waves are reflected back. This quickly contaminates the €
computation domain.

Figure 15 shows the same simulation except that there is no mean flow. In the abser
a mean flow, the PML acts as an absorbing layer. Figure 15a shows the entry of the acc
pulse into the downstream PML. Figures 15b to 15d show the damping of the acot
pulse in time in the PML. The slowest components to decay are the long waves. This
agreement with the analysis of the previous section.

5. CONCLUDING REMARKS

In this paper, we have shown that the application of PML as an absorbing bount
condition for the linearized Euler equations works well as long as there is no mean |
in the direction normal to the layer. For open domain problems, the PML equations
the presence of a subsonic mean flow normal to the layer, support unstable solutions
growth rate of the unstable solutions is, however, not large. These unstable solutions
generally, be suppressed by the addition of artificial selective damping. In the case
ducted environment, we find that because of the highly dispersive nature of the duct mc
a band of the transmitted waves in the PML amplifies instead of being damped. This |
consists of long waves so that they are not readily suppressed by the inclusion of arti
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selective damping. This seemingly renders the PML totally ineffective as an absork
boundary condition.

One of the important advantages of using an absorbing boundary condition instea
other numerical boundary treatments is that the boundary of the computation domain
be put much closer to the source of disturbances. In this way, a smaller computation dor
may be used in a numerical simulation. For open domains, such an absorbing boun
condition can be developed by the use of PML with artificial selective damping tern
Unfortunately, the same is not possible for internal ducted flow. An effective numeri
anechoic termination for ducted domains has yet to be developed.
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